ELET 4308/4108 Senior Project

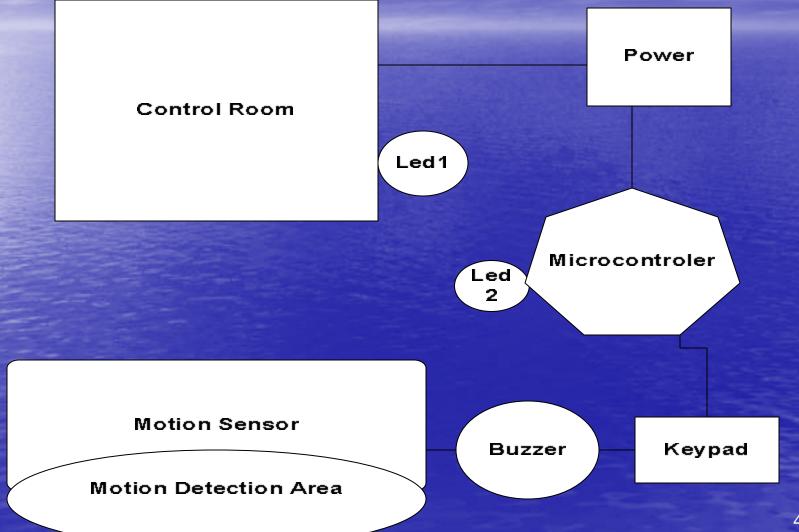
Motion Sensor Security System

Ву

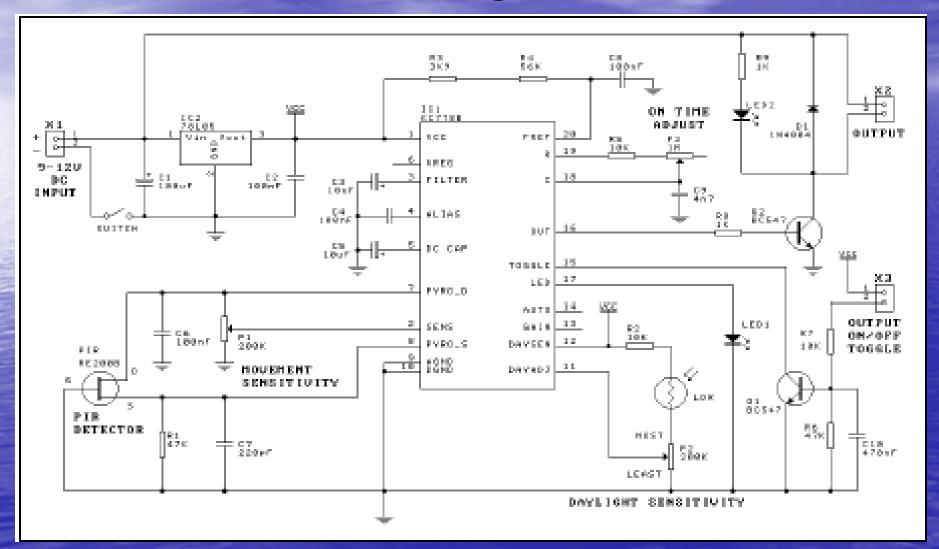
<u>(TEAM 4)</u> Agbazue Stanley

Singleton Kellen

(DR. Attarzadeh) FALL 2004 11/30/2004


Introduction

- The project itself is a motion sensor security system capable of detecting the presence of body heat in any designated area.
- State of the art motion detectors use the most modern techniques to eliminate factors causing interference, which affect reliability, to guarantee superior long-term performance and reduce false alarms.
- A few companies that use this state of the art technology are ADEMCO, DSC, VISONIC, IntelliSense, and PARADOX.


Project Objective

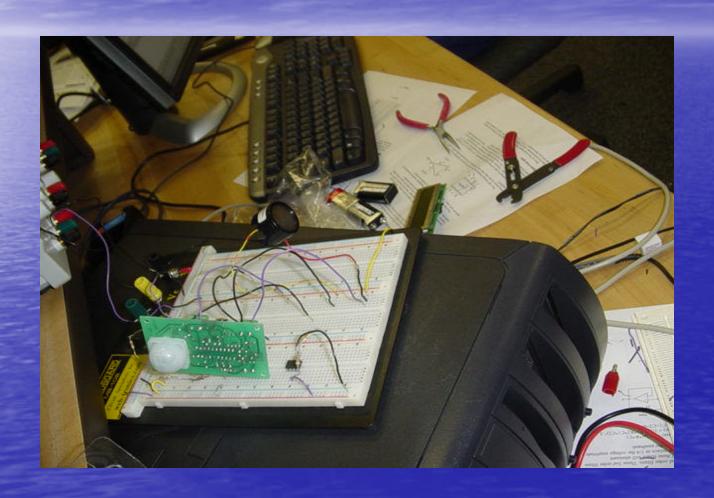
- The goals of the alarm system are to detect heat movements in a specified area triggering a siren/buzzer to sound.
- Critical design parameters include interfacing the microcontroller (8051) with the PIR integrated circuit.
- This design promotes added control to the crime rate of the regulated work environment after hours of work operation. It also cuts down on expenditure costs on human resources.

Block Diagram

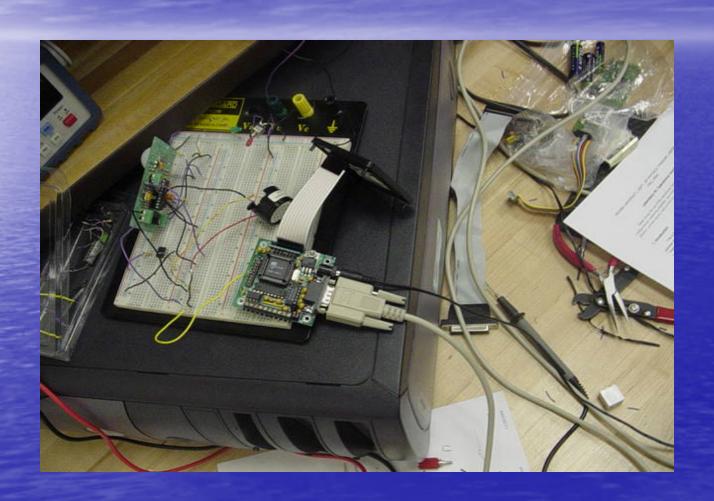
Circuit Diagram

Project Specifications

- Motion Sensor operates on 9 -12 volts
- Buzzer operates on 4-15 volts
- Micro-controller operated on 5 volts during testing.
- 3-4 meter detection range
- PIR detector has a field view from 125° to 138°


Project Description

- Infrared motion sensor
- Led indicators inform of an alarm present and designate when motion has been detected
- Switch control will turn on system .
- Keypad will disarm the system.
- (IC KC778B) that contains the pin configuration to control the actual motion detection


Motion Sensor Prior to Assembly

More of Motion Sensor

Micro-Controller Before Assembly

Motion Sensor Assembled to Security Area

Software Design

- Software application entails the use of a microcontroller which will utilize the handling of the program instruction to the system built. Microcontroller involved will be the 8051 microcontrollers.
- The program will be used to disarm the alarm system after the buzzer is triggered.

Plan of action

- Brainstorming
- Analysis
- Implementation i.e. hardware construction
- Simulation i.e. software testing
- Overall testing

Project Components

- Micro controller (8051)
- PIR Detector (RE200B)
- Master PIR Control Chip (KC778B)
- Power supply
- Wires
- 2 Led's
- Bread board
- Resistors
- Capacitors
- Toggle Switches

Benefits

- Increased security control
- Convenience
- Relatively inexpensive.
- Provides reliable and efficient results.

Testing and Procedures

- Set up a dummy security area
- Turn power supply on
- Allow 1 to 3 minutes for the PIR sensor to warm up
- Walk into the detecting range across the PIR beam and observe the LED indicator. The LED indicator will light up whenever you enter or exit under detecting beams.
- Check if the corresponding ZONE LED on the control panel lights up when you activate the PIR detector set to that zone.

Project Schedule For Hardware

•	Brainstorming	5d	Tue 9/28/04	Mon 10/4/04
•	Idea Concept	2d	Tue 9/28/04	Wed 9/29/04
•	Idea Preparation	2d	Thu 9/30/04	Fri 10/1/04
•	Hardware	7d	Tue 10/5/04	Wed 10/13/04
<u>,</u>	Preparation	3d	Tue 10/5/04	Thu 10/7/04
<u>,</u>	Assembly	4d	Fri 10/8/04	Wed 10/13/04
•	Wiring	1d	Fri 10/8/04	Fri 10/8/04
•	Testing	2d	Tue 10/12/04	Wed 10/13/04

Project Schedule For Software

•	Software	7d Thu 10/14/04	Fri 10/22/04
•	Software Design	3d Thu 10/14/04	Mon 10/18/04
•	Software Impl.	2d Tue 10/19/04	Wed 10/20/04
<u>,</u>	Software testing	2d Thu 10/21/04	Fri 10/22/04
J	Completion	3d Mon 10/25/04	Wed 10/27/04
•	Final Assembly	2d Mon 10/25/04	Tue 10/26/04
•	Final Test	1d Wed 10/29/04	Wed 10/29/04

Cost Analysis

- Wires
- LED's
- Breadboard
- Motion Sensor
- Capacitors
- Resistors
- Siren
- Relay
- Wood
- Microcontroller
- Total Cost

- \$5.00
- \$1.00
- \$20.00
- \$35.00
- \$3.00
- \$2.00
- \$10.00
- \$4.00
- \$14.00
- \$0.00 (donated)
- \$93.00

Problems Encountered

- Configuring microcontroller to disengage alarm
- Supplying sufficient voltage to properly function the buzzer

References

 http://www.ami.ac.uk/courses/ami4655_micros/ u01/micro01hist.asp

- <u>8051 Microcontroller and Embedded Systems,</u>
 <u>The</u>
 <u>by Muhammad Ali Mazidi, Janice Gillispie Mazidi,</u>
 <u>Muhammed Ali Mazidi</u>
- http://www.aesecurity.com/pir.htm

Thank you for your time

Questions

